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ABSTRACT

s

In processing networks, ordinary network constraints are supplemented
by proportional flow restrictions on arcs entering or leaving some
nodes. This paper describes a new primal partitioning algorithm for
solving pure processing networks using a working basis of variable
dimension. In testing against MPSX/370 on a class of randomly generated
problems, a FORTRAN implementation of this algorithm was found to be
an order of magnitude faster. Besides indicating the use of our methods
in stand alone fashion, the computational results also demonstrate
the desirability of using these methqu as a high-level module in a

mathematical programming system.

- Kez,Wbrds o

Networks
Processing networks
Linear programming

Mathematical programming systems ,
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1. Introduction.

Pure processing networks are minimum cost flow problems in which
proportional flow restrictions are permitted on the arcs entering or
leaving a node. Applications are widespread with the proportional flow
restrictions governing such things as the size of loan payments 1n cash
flow models and the relation between raw materials and finished
products 1n assembly models A survey of applications is included in
the work of Koene [16]. The proportional flow restrictions can be
modeled ei1ther as nonnetwork rows or as nonnetwork columns 1n a linear
programming (LP) formulation Our approach uses nonnetwork columns
since they lead to an LP basis with fewer rows. In [16], Koene shows
that any LP problem can be resdily transformed to a pure processing
network problem at the expense of enlarging the problem size. However,
the primal partitioning methods of this paper will only be more
efficient than standard LP methods when the basic nonnetwork columns
form a small fraction of all basic columns. fhe allowable size of this
fraction is vet to be determined

The success of primal simplex solution procedures for solving pure
networks 1s well known These procedures depend on special date
structures popularized by Glover and Klingman and their co-workers more
than a decade ago (7). [8}. {13] A detailled description of network
methods is given by Bradley et al {2]. Standard primal simplex LP
codes, however, use data structures for exploiting sparsity 1n the
basis matrix [20]).[22]). As shown 1n [B8], [9]. [25]. specialized net-
work codes have achieved an advantage 1n solution speed up to two

orders of magnitude over standard LP codes.
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Since LP problems often have a large network component, ways to
exploit this component based on specialized network methods have been
sought. This creates a need to reconcile the two data structure types.
Two levels of detail for combining these data structures have been
used. Glover et al. [12] describe a high-level approach in which a
PL/1 main program calls both a FORTRAN network code and MPSX/370 [14]
modules in a complex solution procedure for a large nonlinear mixed
integer program. McBride [18]) and Glover and Klingman {10].[11]
describe solution methods for embedded network problems 1n which basis
partitioning allows both network and sparse matrix data structures
which are tightly integrated 1n maintaining the basis. The specialized
FORTRAN code of [18] ran about five times faster than MINOS [21] In
[11]. three targe problems which included both nonnetwork rows and
columns were solved using a FORTRAN embedded network code and MPSX/370.
The nonnetwork rows make these problems more difficult than the test
problems of the present paper, and MPSX/370 solved them about 4% faster
than the specialized code These efforts provide a start 1n delimiting
the class of problems which benefi1t from tight integration of the two
data structures

Tomlin and Welch [25]) describe & mathematical programming system
written 1n assembly language which contains two optimizers, one based
on network data structure; and one based on sparse matrix data
structures. Some modifications of network methods were made i1n order
to accommodate the network optimizer i1nto the system. This 1s a
high~level approach since problems which are partly network do not
benefit from the specialized network data structures. However, the two

optimizers do have common 1/0 and start routines. For embedded network
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. problems with nonnetwerk rows, a two stage starting procedure is o
\} oo
a "
é described in which the network portion of the problem is first solved :.;'
] .-.‘
' using the network optimizer. This solution 1s then used to provide a ::'
. partial basis for the regular LP optimizer. Presumably this approach At
o -
i 1s superior to using only the regular LP optimizer and its start ot
) oy
’:3‘ ) routine. however, comparative solution times are not provided 1n [25] -
N
. A similar approach was used in [11] where a FORTRAN network optimizer 4
. PP A
8 o '
byt
solved Lagrangian relaxations of the original problem 1teratively to !
[ }‘_\
'* provide an 1nitial partial basis for MPSX, 370 This start procedure s
A A
. resulted in a total solution time which was 21 times smaller than that
\ 5
+ achieved when the MPSX/370 CKRASH start procedure was used ..';-\:
y o\
. .
0 Chen and Engquist [5) described a primal simplex variant which 1s d
‘ I
. the precursor of the algorithm of this paper One feature of the e
- o
™ algorithm of [5] 1s that all nonnetwork columns are always basic. This o
- £
. - M
;“ results 1n a working basis whose dimension 1s equal to the number of ™
nonnetwork columns. When & FORTRAN implementation of the previous Q
b algorithm was tested against MINOS, 1t was found to be an order of L-\.‘
» o
SN
_,<: magnitude faster on problems with up to 20U nonnetwork columns The ::’;:
) v
. question remalned as to whether a similar 1mprovement 1n efficirency '::
K \
could be achieved against an assembly language code such as MPSX/370 \‘l:
‘ o
Wy NN
v In the present paper, we answer this question i1n the affirmative. We ::!nf
. (W]
, describe improvements to both the algorithm and implementation of [5] "
) N
\} ~3
%\ In particular, the working basis for the current method has a dimension ::‘~
* ’ LW
::: which varies with the number of basic nonnetwork columns. The approach >
)
L
- we use 1nvolves a fairly tight 1ntegration of network and sparse matrix .
o 9
: date structures. The design of our processing network code, PROCNET, i;
< <
F
-' was influenced by Marsten [17] in that it consists of a library of ;:
5t
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-4
subroutines which communicate through parameter lists. Like Marsten's
XMP code, PROCNET utilizes the LAO5 subroutines of Reid [23], [24]. 1In
fact, our extension of the LAO5 subroutines may be beneficial to XMP
users. This is discussed in Section 4. Although PROCNET is already
highly efficient, further speedup i1s no doubt possible through a
tighter 1ntegration of network and sparse matrix (LA0O5) data
structures. It would also be of i1nterest in future work to use PROCNET
as a module 1n a high-level approach. For example, 1n large embedded
network problems having both nonnetwork constraints and nonnetwork
variables, the nonnetwork constraints could be nitially relaxed
PROCNET could then be used to solve the remaining problem and thus pro-
vide a partial starting basis for an LP optimizer.
2 Background on Processing Networks

The pure processing network problem (problem PPN) 1is.

minimize CNXN + CpXp
subject to. ANXN +

0 < XN

The mxn matrix AN 1s the node arc 1ncidence matrix for a pure net-
work N. while the mxp matrix AP contains the nonnetwork columns These
nonnetwork columns are also called processing columns. Vector b
contains the supply values, while cN and Cp contain unit costs for the
vectors of decision variables XN and Xp- The capacities are the
components of the simple upper bound vectors hy and hp. It 1s assumed.

without loss of generality., that & slack arc and artificial arcs with
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Big-M costs have been introduced into the network N so that it is
connected and the matrix AN has rank m. It is also assumed that each
row of [Ay.Ap] contains at most one non-zero component from the columns

of Ap. The latter assumption is made to simplify the notation, and it

does not restrict the application of our methods. Each column of Ap is

of the form

a,, 10 row v

_“vw(z) in row w(z), z=1,2,...

0 el sewhere .

Further, o

I

must hold

Corresponding to each column of AP is a column of AN called an alloca-

tion colwnn The following network diagram 1s assoctated with this

structure

M A o T (T
G 2RRONI

A W N )



T TR T O TR T O TR AR TS A TER TR T B Y T W T R E T ¥ FAER AR URUWE T T

—6-
w(1)

iy
L2
L
Al
D

Al

Ce)

)
";-}; u v
ot
Y

o -

A3

».2_\
.c\
Wl

w(t)

LA
W

e
' Figure 1. A Splitting Node
£y ad
e In Figure 1, the square 1s termed a splitting node. while the circles

S
:!‘. are ordinary network nodes Arc (u.v) 1s called an allocation arc and
LAY
,". 1ts column 1n AN 1s the allocation column The arcs leaving the square
node 1n Figure 1 are termed processing arcs, and they are represented
1b,
()
Ly by a column of the form (2 5) Node v and nodes w(l), w(t) an
e

- Figure 1 are called processing nodes. Conservation of flow and the
[l ),
W conditions on the oyw !Mply that a flow x entering the splitting node
a0

._:: . tn Figure 1 generates a flow “vw(z)x along processing arc (v,w(z)) To
AL
:é’ be consistent with (2.5) we assume that ordinary network arcs are
K .
= represented by a column of Ay which contains a 1 1n the row
L
: corresponding to the tail node of the arc and a -1 in the row
[y
s. corresponding to the head node. In Figure 1, 1f arc (u.v) corresponds
o
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to column r of AN and the corresponding processing column (2.5) is

column s of Ap. then it is assumed that the capacities [hN]r and [hp]g

are equal.

In [16]), the definition of pure processing networks includes the
structure formed when the direction of the arcs 1n Figure 1 s
reversed For problems with finite capacities, by complementing flows
with respect to these capacities and adjusting supply values
appropriately. this structure caen be reduced to the one shown 1n
Figure 1. Thus, there 1s no loss of generality 1n restricting
attention to the structure of Figure 1

In order to exploit the network structure of PPN, 1t 1s necessary
to see how this structure carries over to a basis The first
observation to be made 1s that the slack arc column must be present 1n
any basis matrix, otherwise the rows of the matrix would sum to zero
Next. we note that when the processing columns and the slack column are
removed from a basis matrix containing r processing columns, the
remaining columns correspond to the arcs in r+l trees This follows by
nosimple counting argument These r+l1 trees are called basis trees
The basis tree which 1s 1ncident to the problem's slack arc, when taken
together with that arc. forms the basis quasi-tree For the remaining

r trees. root nodes are chosen avbitrarily and the resulting r rooted

trees are called the rooted basis trees We Jet a basis matrix B

P
LD

[y

containing r processing columns be partitioned as

,—’l. NP

(B, .B.] (2 7)

v
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where B1 contains network columns and B, contains the processing
columns.

I1f the last r rows of B correspond to roots of rooted basis trees,

then
T C
Bl = and B, = (2.8)
D F
results where T and C have m-r rows and D and F have r rows. The

working basis corresponding to basis B 1s defined to be the matrix Q

where

c 2.9) *\*Q

-

It can be shown that Q is nonsingular, see. e g . [5]). [15] R
s

The matrix T 1n (2.8) corresponds to a collection of quasi-trees.

By judicious use of matrices T and Q, updated entering columns and dual

R
Aty
'

variables for the primal simplex algorithm can be computed without the g
\-'r':\ )
need for maintaining a factorization of the entire basis matrix B If {:%:f

— a f?;

a = [ 1] 1s the entering column and 1t 1s partitioned to be =

a -

2 . Y
compatible with (2.8), then a straightforward calculation shows that ?;}.
t -'.._"_..

[

the updated entering column | Y1 1 1s obtained by solving Fal
& )

_ ~-1
Qy, = a5 - DT "a, (2.10)
— - l T_ l
y, =T 'a; - Cy,. (2.11)
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Similarly, we partition the basic costs CB=[C1.C2] and the dual
variables 17-—-[7‘],1(2] so that they are compatible with (2.8). The dual!

variables are computed bv solving

Suppose  that column ) of B 1s the processing column with

2
splitting node v P” 1s defined to be the set of processing nodes in

rooted basis tree 1 which correspond to nonzero values 1n column j of

B, The following theorem was proved in [9]
Theorem For & basis B. the elements qu of the working basis Q
satisfy

(2.14)

where the sum 1n (2 14) 1s defined to be zero 1n case PlJ 1s empty

f the entering colwnn corresponds to an are with both end nodes
In a common basis tree 1l follows from (22 10) and (2 11) that the only
flow changes occur on the cyvcle 1n the tree formed by the entering arc
Furthermore. the theorem implies that no working basis update s
required 1n this case This type of pivol 1s termed a pure network

pivol while all other pivots are termed processing nelwork pivots
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'] 3. Primal Simplex Variant
'
é The fundamental observation 1n the development of the primal
! simplex vartrant which we use relates to Figure | The flow on the al-
\ location arc (u.v) must equal the value of the variable for the
, associated processing column Thus. 1f the processing column is to be
? ' the leaving variable the ailocation arc can leave the basis 1nstead
4 Note that the allocation ar¢ must be basic 1n this situation. since
é otherwise the pivot would lead to the i1mpossible situation 1n which
. both the allocation arc and the processing column are nonbasic.
. Before stating the simpiex algorithm, we outline the situations
f which are to be considered i1n updeting the basis trees and the working
basis Q during the basis exchange step Before the basis exchange s
= executed. we assume that 7, 1s the basis quasi-tree and T, =Ly
., are the rooted basis trees. Those basis trees which have been changed
during the exchange step will be designated by means of an asterisk.
) l1f a change to T 170, results in & change to one of the sets ij 1n
: (2 14). then row 1 of Q must be updated
: Several cases occur 1n the basis exchange step of the simplex
' algorithm. However, the variant we describe allows us to restrict
X attention to the two following cases
: (1) The entering column 1s a processing column and the leaving column
y 1s a network column (arc). If the leaving arc 1s 1n 7,. then row
€ 1 of Q will be updated (unless 1=0) and an additional row and
;’ column wil) be adjoined to Q.
:
: L‘:,l‘
1 0 ANK
! S
. R
X ',.:,.';
Y
, (;}5?
" "
B R T P s
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" (1i) Both the entering and leaving columns are network columns (arcs).

3 | |

} If the entering arc is incident to T and TJ. then these two trees

#‘ are joined to form T If the leaving arc is contained in Ty

o) then 7, splits into two trees upon its removal. One of these

l.l

: becomes r} and the olher becomes e If 1, j. and k are nonzero

' \

)

:d ’ and distinct, then three rows of Q will be updated Otherwise.

I special cases occur 1n which at most two rows of Q are updated

§

Q One of these special cases 1s the pure network pivot for which no

)

' updating of rows of Q 1s necessary.

“ We remark thet cases 1n which a processing column leaves the basis are

3

; not considered here. since the allocation arc can be chosen to leave

')' instead

)

The basis trees can be visualized as hanging downward from their

-

2

g roots The node i1ncident to the slack arc 1n the basis quasi-tree 1s

S: taken as the root there If two basis trees T and 7] are joined by an

. entering arc, the resulting 7: will] retain the root of T, while 1J will

k hang below T, onoTe Also. when a leaving arc 1s deleted from a basis
Lrec 1 an upper tree 1, which contains the root of "k and a lower

Y tree TR are formed

A starting PPN basis c¢an be obtaitned by first setting the

v o EY

J
$ variables xp, 1n (& 1)-(2 4) to upper or lower bounds according to some
L]
N heuristic procedure These variables are set nonbasic 1n the PPN
I.
N basis Those ¥p variables at upper bounds 1nduce supplies 1n network N
T4
- in addition to those represented by b i1n (2.2) The resulting network
problem 1s solved to optimality to give the initial collection of basis
trees which, 1n this case, consists of a single quasi-tree Of course,
;' this quasi-tree may contain artificial arcs with positive flow An
s
"'
7,
’l
y
. A
: 3
Lo SR A Tt L e S T L TR T v TR T
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extension of this starting procedure has been implemented as described
in Section 4.

We introduce the vector X to represent certain quantities which

o) may be thought of as pseude node potentials.

s

O

%ot

ey -1

Q@

:J It will be useful to extend » by defining AJ=0 for root nodes ) of

4.- \

%$ rooted basis trees. For convemience, this extension will also be

[

) denoted as >

-2

::¢ Primal Simplex Algorithm for PPN

S

.t 0 Obtain an 1nitial basis. Set up the 1nitial basis trees and

o v

. working basis Compute 1ni1ti1al dual variables and basic solution

; ’ 1. Price nonbasic processing columns and arcs. 1f an entering proces-

\l

&, '\|

?q sing column 1s found, go to Step 3 If an entering arc is found.

W

- go to Step 2. If no entering processing column or arc exists,

-'" Iy :
I )

iB check for basic artificial arcs with positive flow. I1f basic ]

) &

\s artaificaials with positive flow exist, stop with an infeasible prob-
lem. otherwise, stop with an optimal solution

I1f both end nodes of entering arc e are not 1n a common basis tree

A
fel
LAY |

e :».I
;gr T, go to Step 3 Otherwise, restrict the ratio test and flow ar
e

. update to the arcs on the cycle formed 1n 7 by e Update A on the e
'}‘i

s

a.' ) tree hanging below e after the leaving arc is removed. Go to ;
1Yy .
M' Step 6 ’
?E‘ v

FrLAh| |

| A
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o 3. Compute Yy and yo using (2.10) and (2.11).
7? 4. Perform the ratio test restricted to arcs. Update basic solution
2? values.

5 Update basis trees and working basis (basis exchange step) If an

arc 1s entering the basis go to (11)
o ) (1) A processing column enters the basis, and the leaving arc 1s
} . ooy The leaving arc 1s removed to form an upper tree Tkl

and a lower tree k2 Tree k2 becomes 71 A 1s updated on

r+l-

A T and row r+1 of Q 1s created using (2.14). Column r+l

r+1-
of Q corresponding to the entering column 1s also created

el

using (2 14) Tree k1 becomes T and row k of Q 1s updated

4:: (unless k=0) Go to Step 6

N (11} An arc e enters the basix (The details follow for this
~_\

!; step when e 1s 1ncident to 7~ and T the leaving arc 1s 1n
I

.: Tk and 1, J. k are nonzero and distinct The remaining

cases 1nvolve at most two rows of Q and the details are

o o ol

omitted ) First. . hangs below 7, via arc e to form 3 and

15 updated on rJ. Row 1 of Q 1s updated to form Q° Next .

the leaving arc 1s removed from Tk to form an upper tree K1

o

and & lower tree "2 The lower tree becomes T] and » s

,* updated on r;, Row } of Q°* 1s updated to form Q**. Finally.
« Ty becomes 78 and row k of Q*'* 1s updated to form Q***.

L}

¢ 6. Update n, using (2.12). Compute r; using

"8

Al
\> _ 1

. o= noDT (3.2)
)

L)
. where A has been previously updated. Go to Step 1.

Y

l '
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f% In the above algorithm, processing columns are allowed to enter

33 the basis, but not to leave. However, when the basis is reinverted,

i/ eligible processing columns are removed from the basis via a series of
degenerate pivots. More details on this procedure are given in

'

SE Section 4.

ﬁﬁ Updating of A on a tree which 1s rehung is done by adding a

zg certain constant to these A values 1n the same way as node potentials

Ei are updated in the pure network case.

&9

%F 4. Implementation

fq A FORTRAN 1mplementation, PROCNET, of the primal simplex algorithm
of Section 3 was created This version of PROCNET extends and enhances

g a previous version which 1s described 1n [5] Probiem data storage in

q PROCNET 1s accomplished by means of arravs for arc costs. capacities,

g

;; and head nodes. Also, arrays containing the nonzero values in proces-

:

:‘ sing columns and the positions of these values are used. The costs of

”( processing columns, components of cp in (2.1), are assumed to be zero,

g since such costs can be placed on the allocation arcs instead

3

vS: The basis trees are incorporated 1nto a single., larger tree

ot following [10]. [11]. This tree 1s referred to as the master basis

%; tree and 1ts root 1s called the master root The roots of all basis

ol

trees are connected to the master root by artificial arcs, and the

&

slack arc of the basis quasi—-tree 1s disregarded since 1t plays no role

W
:: in the 1mplementation. For mainteining the master basis tree, the
[t b
‘> predecessor, depth, thread and reverse thread functions [2]. [13]. [15] o
Loved |
are employed. \
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Since the updates to Q in Step 5 of the primal simplex algorithm

LA
involve more changes to rows than to columns, we have elected to main- ::
tain Q by applving column replacement techniques to its transpose QT e
;:; Three LAO5 subroutines were written in FORTRAN by Reid, and they i
o, ;
' are described in [23], [R24). These subroutines implement & sparse ]
a&? variant of the Bartels-Golub algorithm [1] In order to utilize these :j
;&%; subroutines for maintaining the working basis for PROCNET, we needed to ::
%2;‘ extend them by providing & means for adjoining additional rows and tt
e X
‘ﬁ?, columns. The two subroutines we created for this purpose are described A
yw in this section and we note that they may be useful in situations other S
g { than maintaining a working basis. For example, Marsten's XMP |inear i3
kg? programming code [17] uses the original LAO5 subroutines for malin- ‘ﬁ
Y taiming the LP basis. Our additional subroutines can be used to pro- :E
’zg vide a restart capability for XMP when one or more rows are adjoined to i
-{3 an LP problem 5.‘
SN We proceed with an explanation of the functions of the three RY.
O RS
:;ﬁ original LAOS subroutines as applied to the rxr matrix QT 1n PROCNET ::
A .
Orf The LAOS5SA subroutine produces a factorization
.
Wy Q" = L (4 1) '

RIS

The lower triangular factor L. 1s maintained as a sequence of eta

L e
:&E vectors The upper triengular factor U is stored as a sparse matrix E
",
%*3 with the nonzeros 1n the rows held 1n packed form, while only the %
= positions for nonzeros 1n columns are kept Additional 1nformation =
: E which is maintained includes the pivot order and the number of nonzeros E
:bﬂ per row or column. ;
s 4
v
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The LAOSB subroutine solves sets of equations

|
ol

Q' = (4.2)

and

Qx=5 (4.3)

where X and b are r-dimensional vectors This solution 1s carried out
with the use of (4.1).
The third subroutine, LAQOSC, revises the factorization (4.1) when
one of the columns of QT is changed
T

In order to accommodate additional rows and columns for Q in

{4.1). we embed this matrix 1n a larger matrix QT where

qr = (4.4)

and | 1s an i1dentity matrix of dimension s. When an additional row d of
Ql of length r+l 1s created, 1t 15 embedded 1n a row of length s+r con-

taining s-1 initial zeros as

(0. ,0.d]) (4.5)

and the row of (4.5) is i1nserted as row s of QT in (4.4). Likewise, an
additional column of QT is supplied with s-1 i1nitial zeros and inserted

as column s in (4.4).

- -
-

YL VARG LN '\‘nj\}\‘ '%}5‘&‘\'\
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»#% A new subroutine LAOS5SS was created which takes the original fac-
\ []
I. torization of QT from (4.1) as provided by LAO0O5A and adjusts the
@‘:
S information for storing L and U to produce the factorization
g’ = [0 (4.6)
Al -
ol (1 o
':f.': where L = (4.7)
Q L
Ly - J
u.' r—
;! 1 o]
a:. v and v (4 8)
"‘.'.l O UJ
e
a Fssenti1ally what 1s done 1s to change the pointers for rows and columns
3N
?:' of U and to insert the nonceros (ones) for the rdentaity matrix The
Wy
rows acted on by the eta vectors of L must also be changed
::i appropriately.
Lod
‘ A new subroutine LAOSTT carries out the task of 1nserting a new
b

row (4.5) when this is required. We note that changes are needed for

the data maintaining U but eta vectors corresponding to L remain

d 'l“l [N
iy
PN SO

correct For 1nsertion of o new column to QW, LAOOC 15 used

< mm
-

PROCNET obtains an 1nitial basis for PPN by means of a heuristic

;“:‘:‘:. based on [3]. [6] In order to apply the heuristic, the arc data for
'::‘:‘::’ each processing arc are generated The resulting pure network with
R proportional flow restrictions relaxed 1s solved first. Next, the flow
. values of the relaxed solution on the allocation arcs are used to
}‘:: creeate a new pure network problem with nonzero lower bounds on the
bl

processing arcs. If the flow value on the allocation arc (u,v) of
Figure 1 1s x, then the lower bound on arc (v.w(z)) 1is set to

oy 0.75%x

- vw(z)X This second network problem is solved and the flows on

allocation arcs are saved. If such flows are at the original problem
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$

X bounds, the corresponding processing columns are made nonbasic while

DYy

1

:h the allocation arc 1s basic. If an allocation arc has a flow between

LX)

f

e

‘i' the original problem bounds, & parallel allocation arc is created with

i a capacity equal to this flow value. The parallel arc is given the

¢

0

fg' same cost as the original allocation arc, while the original allocation

U

y

f&‘ arc 1s replaced by a modified allocation arc whose capacity equals the

N original capacity less the flow value. In the initial PPN basis, the

;i modified allocation arc 1s nonbasic at zero, the parallel arc s

Py

b nonbasic at capacity and the corresponding processing column 1s basic.

X The i1nitial working basis Q 1s an rxr 1dentity matrix where r 1s the

5 number of parallel arcs created The 1niti1al flows through allocation

"

? arcs and their parallel arcs induce suppiy values on the remainder of
the network This remaining network problem is solved to optimality

i, and the resulting optimal tree becomes the initial PPN Dbasis

>

} quasi-tree

o We note that an 1mprovement to the way allocation arcs and their

L%

:: parallel arcs are handled has resulted 1n about a 10% decrease 1n the

[}

.' number of PPN 1teralions over Lhe previous version of PROCNET [5]
This improvement 1s accomplished by reinstating the original allocation

)

.i arc and eliminating the modified allocation arc and 1ts parallel arc

o

s once one of the latter arcs enters the basis. In the previous version

[

e of the code both the modified allocation arc and its parallel arc were

v

'

" maintained for all PPN pivots, and this restricted the amount of flow

W

L change which could be achieved on a single pivot involving these arcs.

o

|

'

k)

o

o
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PROCNET uses two conditions to trigger a basis reinversion The
first ot these conditions 1s & total of 40 column and row/column
updates of QT, The other condition i1nvolves the dimension s of | 1n
(4.8). After s processing columns have entered the basis, the next
entering processing column causes a basis reinversion during which a
new identity I is created PROCNET currently uses a value of 10 for s
At the time of basis reinversion. PROCNET searches for basic processing
columns having corresponding allocation arcs (see Figure 1) which are
nonbasic. Before this basis reinversion takes place. a series of
degenerate pivots 1s executed i1n which such processing columns are made
nonbasic while their allocation arcs become basic

Pricing for PROCNET 1s handled by means of two candidate lists. LI
and L2 L1 1s used for pure network pivots while processing network

pivots arising from either entering processing columns or arcs are

placed on LZ In order to i1dentify arcs which correspond to pure net-
work pivots. basis trees are numbered A node length array. treenum,
assigns to each node of a given tree the number of that tree If

treenum values at end nodes of a pivot eligible arc agree, the arc s
placed on LI Otherwise., 1t 1s placed on LZ PROCNET repeats Step &
of the primal simplex algorithm for all eligible arcs from L1 before
updat ing UPERE Step 6 The length of L1 was set at 50 and the length
of L2 was set at 30. After all pivots from L1 have been made, up to 15
of the best pivots from LZ are made following the logic of [19].

Pure network pivotls are accomplished following the same procedure
used 1n a pure network algorithm. For processing network pivots, yp 1n
(2.10) 1s computed using LAO5B. If 1 denotes a processing column such

that [y2]l # 0, then PROCNET flags basis trees containing processing

et
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h
nodes corresponding to column 1. In computing Yy by means of the A
-
reverse thread in (2.11), only trees which are flagged are traced. ;
r_
Since processing columns do not leave the basis until a reinversion I
occurs, only y, values are used in the ratio test. “W
All parameter settings for PROCNET mentioned 1n this section :{
remained fixed at these values for the testing described 1n Section 5. -
o8
5 Computational Results ‘:
Ky
In this study. test problems were solved bv MP3X 370 and PROCNET ::
Testing was done on the IBM 3081-D at the Universitv of Texas As
previously noted. MPSX/370 1s an  assembly language program while :::
PROCNET 1> wraitten 1n FOKTRAN PROCNET was compiled using the FORTVS o
s,
compiler with optimization level 3., and 1t maintains all real values -
using double precision. The execution times for both codes are :"'
reported 1n central processor seconds These times do not i1nclude
input or output with the exception that one line of output (i1teration
n'
log) 1is produced by MPSX/370 each i1teration This small amount of !
output has n negligaible offect on the overall comparison of the two
codes -
Nt
The (CRASH and PRIMAL modules of MPSX 470 were employed i1n solving ‘U
g
)
the test problems To be comparable with PROCNET. the reduced cost W
[ 45t
tolerance (XTOLDJ) of MPSX/370 was set to 1072 It was necessary to
set the feasibility tolerance (XTOLV) to 10°% since the default value o
of 10—5 kept MPSX/370 from reaching feasibility on the test problems. \
w0
All other parameters for MPSX/370 were set to default values
., ‘:l.
X NS
v o
-0 v,
'c} A
X N3,
U =
:o:: b
t",,ﬁ ;-.
':h N
u.;.' ;\
L {.
K a
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Parameters used by PROCNET. 1n addition to those previously
discussed, are provided next. The reduced cost and feasibility
-5

tolerances were both set to 10 Bi1g-M costs on artificial arcs were

set to 99999, while pivots with minimum ratio less than 10_10 were
treated as degenerate In LAOSA and LAOSC, pivot elements less than
0.1 times the largest element 1n the pivot row were excluded. Default
values were used for other LAOS parameters

The (lass of allocation processing (AP) network problems was used
for testing These problems have a dual block angular form where
subproblems corresponding to diagonal blocks are transportation prob-
lems and coupling columns are processing columns This class of test
problems was also used 1n [4]. [5]

P'roblem data. with the exception of total supplv. was randomly
generated All constraints were formulated as equalities. As the
problems are generated, a feasible flow 1s created  The capacity of
each arc with finite capacity 1ts set to a parameter u times the
feasible flow generated for that arc Total supply was set at 10000
for all problems Two coust ranges. A and B, were used Cost range A
has (osts on allocation arcs 1n the range 100 to 150 and other ar«
costs 1n the range | to 100 Cost range B has allocation arc costs an
the range 1 to 100 with other arc costs 1n the range -100 to -1

Because a machine dependent (CDC) random number generator was
employed 1n the previous studies [4]. [5]. we were not able to i1nclude
the problems from those studies here. The test problems solved are

similar to those of [5], however, problems with more processing columns

and problems with vaeriable u values are included here

) R A L a0 q'-." x""/("\.' ?
N T s U YR T
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. Test problem data 1s given in Table 1. Problems 1n the groups
\J
¥
:? 1-4, 5-8, ..., 25-28, have the same network topology. Also, groups 5-8
Vg
o
O\ and 25-28 differ only i1n their cost ranges. For problems 4,8, .., 28,
o\ the value of u was randomly selected from the interval {[1.1,2.0] for
:j each arc Computational results for these problems reported 1n
0
*
Q.
Table 1 AP Problem Data
X
‘i Problem Finmte " Rows Columns Processing Nonzeros Cost
» Capacity Arcs {m) (nep) Columns{(p) Per Proc Range
Column
1 allocation arcs 1 1 901 3010 10 16 A
A 2 allocation arcs D0 901 3010 10 16 A
A 3 allocation arcs x 901 3010 10 16 A
W 4 all arce P00 901 3010 10 16 A
: 5 allocation arcs 1 1 2000 5050 50 6 A
o 6 allocation arcs 20 2001 5050 50 6 A
- 0 allocation arcs o 2001 50560 50 6 A
- 8 all arcs 1-2.0 2001 5050 50 6 A
X 9 allocation arcs 1.1 1501 4900 100 4 A
10 allocation arcs 2 0 1501 4900 100 4 A
K 11 allocation arcs £ 1501 4900 100 4 A
N 1 all arcs 1-2 0 1501 4900 100 4 A
:: [ allarntion are - 1o S0 H0H50 150 4 A
N 14 allocation arcs <0 2261 5550 150 4 A
’ 15 allocation arcs on 2251 5550 150 1 A
. 16 all arcs -2 0 2251 5550 150 4 A
B
e
'_: 17 alloration arcs 11 1951 5000 200 4 A
= 18 allocation arcs 20 1951 5000 200 4 A
o 19  allocation arcs ® 1951 5000 200 4 A
20 all arcs 1-2.0 1951 5000 200 4 A
:? 21 allocation arcs 11 1801 4750 250 4 A
- o2 allocation arcs 2.0 1801 4750 250 4 A
N 23 allocation arcs 8 1801 4750 250 4 A
. 24 all arcs 1-2.0 1801 4750 250 4 A
h\
Y 25 allocation arcs 1.1 2001 5050 50 6 B ~
L 26 allocation arcs 2.0 2001 5050 50 6 B o
. 27 allocation arcs w 2001 5050 50 6 B e
A 28 all arcs 1-2.0 2001 5050 50 6 B el
oo
" !
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Table 2. The count of 1terations for both codes begins with the first

pivot after the start (CRASH) procedure. The number of basic proces-

sing columns at optimalitv 1s obtained bv PROCNET. This number pro-

vides an estimate of the dimension of the matrix QT near optimality.

Table Computational Results for AP Problems

o Prob  PROCNET PROCNET PROCNET  MPSN. 370 MPSX/370  MPSX/370  Basic Proc .
[ Start Totul Iterations CKASH Total Iterations Columns at [
b Time Time Time Time Optimality
| ]

1 2.2 5 4 29 72 61.2 2107 10
. 1 8 15 6 1859 TR 128 4 3225 10
: 3 1 4 18 8 1537 T8 116 4 2755 10
. 1 22 21 3 2004 6 6 205.8 5722 10
5 55 23 2 604 210 557 4 8063 24
£ 39 3703 10549 20 4 928 8 12144 47
0 15 a8 1531 216 765 0 992« 50
! 8 4 4 59 9 2038 13 2 1234.8 16827 47
9 3 4 9 4 306 16 8 103 2 2727 77
10 29 21 8 1041 16 8 151.2 3341 77
11 208 24 3 1179 16 8 141 6 3008 99
1. T 321 1800 11 .4 114 6 6230 98 A3
"
..: #"
- 13 4 8 14 7 324 24 6 166 8 3322 150 !
- 14 400 1N vl L0 FORR 3 B | AT 150 ’#1
5 36 32 3 984 26 4 211 2 3350 150 Byt
16 5 6 43 1 1706 17 4 297 6 5658 150 %
. ‘ ~ , , - X
. 17 9 € 37 1 B16 24 0 6GO8 4 8760 71 >
o LH 6 4 59 1 1248 27 4 THG 6 10953 182 G
Tl 14 50 68 0 1565 234 656 4 8850 196 I\
d 20 8 3 83 7T 1829 13 2 1239 0 16885 187 ﬁ
) 21 9 6 37 3 818 24 6 457 8 8078 71 ~d
ne P 6 3 7103 1565 25 8 735 0 11054 212 o
e 23 18 92.0 2110 29 .4 645.0 9163 238 >
N 24 9.2 120 8 2606 14 .4 1240.8 17794 227 -
25 53 20.9 550 21.0 561.0 8480 15 .
26 2 8 8.4 2636 21 0 798 0 10229 10 !
27 25 101.0 3562 20 .4 715.8 9231 48 L
28 3.8 93.3 3498 13.8 1057 .8 14097 46 -3
*
TOTAL 130.1 1302.0 41380 516 6 14925 0 225829 ﬁ
"
'
Y
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The ratio of total solution time for MPSX/370 to that of PROCNET 1s
11 46 Average time per iteration for MPXS/370 is 0.0638 sec/iteration
while for PROCNET 1t 1s 0.0283 sec/iteration The ratio of these
average times per iteration is about 2 .25 The larger ratio for total
solution time can be attributed to the superiority of the PROCNET start
procedure and pivot strategy over that of MPSX’370 on the problems
tested

The efficacy of the PROCNET start procedure and pivot strategy 1s
strongly dependent on u as shown in Table 3. The ratio of total
MPSX/370 solution time to that of PROCNET decreases from 17.00 for
u=1.1 down to B8.45 for u=w. These results show that PROCNET is
especially effective on tightly capacitated problems. Average pivot
times for the processing network code are remarkably stable as u
varies. Apparently, the tendency to a smaller number of basic
processing columns at optimality when u=1.1 is offset by a smaller
percentage of pure network pivots.. On the other hand, 1t seems that
the larger percentage of pure network pivots for PROCNET on problems

4,8,...,28 results 1n a somewhat smaller average pivot time.

Table 3. Performance Values vs yu

Problems u PROCNET % PROCNET  MPSX/370 MPSX/370 to PROCNET
Pure Net- Avg .Pivot Avg.Pivot Avg Pivot Ttl . Time
work Pivots Time Time Time Ratio Ratio
1.5,. .25 1.1 17.3 0.0290 0.0572 1.97 17.00
2.6,...,26 2.0 20.3 0.0295 0.0662 2.24 11.95
3,7,...,27 ® 21.3 0.0290 0.0671 2.31 8.45
4,8,...,281.1-2.0 28 .6 0.0269 0.0837 2.37 11.87
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o In Table 4, variation 1n code performance with the number of pro-
&» cessing columns p is given. Except for p=50, average pivot times for
zﬁ PROCNET i1ncrease with p while the percentage of pure network pivots is
“* roughly decreasing. More nonzeros per processing column is perhaps the
)
1
‘~: ma)or factor which makes the problems with p=50 difficult for MPSX/370.
0N

Y We note that for problems 5-8, the MPSX/370 to PROCNET total time ratio
K- 1s 20.7 The problems with p=100 and p=150 are easier than problems
Y
:b with larger p values for both codes although MPSX./370 to PROCNET total
3
23 t1me ratios are down A possible explanation 1s that the

w transportation subproblems have & somewhat different structure Thas

o
b3 consists of fewer origins, more destinations and more arcs per origin
i
g‘ than those with larger p values Also, when p equals 100, the number
'y of problem rows 1s Jlower From the results of Table 4. we conclude
L

i
S that PROCNET remains very efficient for problems with up to 250 proces-

.

~

g sing columns.

\

')
" Table 4. Performance Values vs Number of Processing Columns
")
.

,’ Problems Process PROCNET PROCNET  MP3SX/370 MP’SX. 370 to PROCNET

Columns Pure Net- Avg Pivot Avg . Pivot Avg Paivot Tt! Time
W (p) work Pivots Time Time Time Ratio Ratio b
[
"': Y
", 14 10 25 0 0105 0 0350 3 33 8 38 ":\'
w 5-8.25-28 50 21 6 0 0278 0 0727 2 62 14 32 Lo
o 9-12 100 36 3 0.0172 0 0293 1 70 5.83
1316 150 31 1 0.0263 0.0507 1.93 7.51
17-20 200 10 2 0 0401 0.0706 1.76 13.27 S

- 21-24 250 12 0 0 0411 0 0648 1 58 9 58 o
.',.\' -:.:-
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6. Conclusion.

T
‘.

1 ﬁ The new version of our pure processing network code, PROCNET,

”yi derives part of its efficiency from a working basis of variable

;“é dimension. An extension of the LAO5 subroutines has been described,

:¢$ and this extension is used 1n PROCNET to maintain the working basis.
e

ﬁ,ﬁ PROCNET substantially outperforms MPSX/370 in both time per pivot and

total solution time on problems with up to 250 processing columns. The
faster time per pivot of PROCNET indicates that it will be useful as
[ part of a mathematical programming system while the faster overall

solution time shows that 1t can be used to advantage 1n stand alone

A
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! o fashion Since PROCNET 1s 8n all-FORTRAN code, 1t 1s highly portable
e
o
Wyl as well. -
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